Hooke-Jeeves method

1. Apply three steps of the Hooke-Jeeves method with the initial approximation $x=0$ and $y=0$ and an initial step size of $h=1$ to find the minimum of the function

$$
f(x, y)=3 x^{2}+5 y^{2}+4 x y+17 x-13 y+4
$$

Answer: We interpret this as a scalar valued function of a vector variable, but for simplicity, we will work with this function as is for clarity. We observe that:

$$
\begin{gathered}
f(-1,0)=-10, f(0,0)=4, f(1,0)=24 \\
f(-1,-1)=12, f(-1,0)=-10, f(-1,1)=-22
\end{gathered}
$$

Now we move in the direction $(-1,1)$:

$$
f(-2,2)=-40, f(-3,3)=-50, f(-4,4)=-52, f(-5,5)=-46 .
$$

Thus, we try again at $(-4,4)$

$$
\begin{aligned}
& f(-5,4)=-58, f(-4,4)=52, f(-3,4) \\
&=40 \\
& f(-5,3)=-60, f(-5,4)=-58, f(-5,5)
\end{aligned}=-46
$$

Thus, we move in the direction of $(-1,-1)$:

$$
f(-6,2)=-44
$$

There is no further improvement, so we try again at this new point:

$$
\begin{aligned}
& f(-6,3)=-56, f(-5,3)=-60, f(-4,3)=-58 \\
& f(-5,2)=-52, f(-5,3)=-60, f(-5,4)=-58
\end{aligned}
$$

There is no change, so we halve h and try again:

$$
\begin{aligned}
& f(-5.5,3)=-58.75, f(-5,3)=-60, f(-4.5,3)=-59.75 \\
& f(-5,2.5)=-57.25, f(-5,3)=-60, f(-5,3.5)=-60.25
\end{aligned}
$$

Thus, we move in the direction of $(0,0.5)$:

$$
f(-5,4)=-58
$$

There is no further improvement, so we try again at this new point:

$$
\begin{aligned}
& f(-5.5,3.5)=-60, f(-5,3.5) \\
&=-60.25, f(-4.5,3.5)=-59 \\
& f(-5,3)=-60, f(-5,3.5)
\end{aligned}=-60.25, f(-5,4)=-58
$$

Now, at this point, you may be asking: aren't we re-calculating a number of points? Yes, and function evaluations could be reduced by using a look-up table (a map). However, in higher dimensions with a more non-quadratic function, such additional searches may be necessary.

There is no change, so we halve h and try again:

$$
\begin{aligned}
& f(-5.25,3.5)=-60.3125, f(-5.5,3.5)=-60.25, f(-4.75,3.5)=-59.8125 \\
& f(-5.25,3.25)=-60.25, f(-5.25,3.5)=-60.3125, f(-5.25,3.75)=-59.75
\end{aligned}
$$

Thus, we move in the direction of $(-0.25,0)$, we note that $f(-5.5,3.5)=-60.25$, so we are done.
As we have finished three iterations, first with $h=1$, then $h=0.5$, and then $h=0.25$, our best estimation of the minimum is at $(-5.25,3.5)$ where the function has a value of -60.3125 . The actual minimum is closer to $(-5.04545,3.31818)$ where the function has a value closer to -60.454545 .
2. Apply three steps of the Hooke-Jeeves method with the initial approximation $x=1, y=1$ and $z=1$ and an initial step size of $h=1$ to find the minimum of the function

$$
f(x, y, z)=4 \cos (0.3 x y)+3 \cos (0.2 y z)+3 \cos (0.1 x z)
$$

Answer: Without showing the calculations, our first step is to move in the direction $(1,1,1)$, so we see:

$$
\begin{aligned}
& f(2,2,2)=6.302734128 \\
& f(3,3,3)=-2.433064947 \\
& f(4,4,4)=-2.732486960
\end{aligned}
$$

At this point, $f(5,5,5)$ is greater, so we try again, and we see we should move in the direction $(-1,00)$, and so

$$
f(3,4,4)=-5.494844728
$$

At this point, $f(2,4,4)$ is greater, so we try again, but there is no direction of better increase, so we halve the value of h. We then try again to see that we should move in the direction $(0,-0.5,0.5)$

$$
\begin{aligned}
& f(3,3.5,4.5)=-6.342732549 \\
& f(3,3,5)=-6.374054453
\end{aligned}
$$

You may wonder why, at the previous step, we did not move in the direction $(0,-1,1)$; however, as it turns out, $f(3,4,4)<f(3,3,4)$, so there was no opportunity to try $f(3,3,5)$. Anyway, we try again, and we see that we must now move in the direction $(0.5,0,0.5)$:

$$
\begin{aligned}
& f(3.5,3,5.5)=-8.002828690 \\
& f(4, \quad 3,6)=-8.489490060
\end{aligned}
$$

Trying again, we see we must move in the direction:

$$
\begin{aligned}
& (0,-0.5,0.5) \text { to get } f(4,2.5,6.5)=-9.513025274 \\
& (0.5,0,0) \text { to get } f(4.5,2.5,6.5)=-9.803830912
\end{aligned}
$$

Now, halving h again, we continue moving in the direction:
$(0,-0.25,0.25)$ to get $f(4.5,2.25,6.75)=-9.945872497$
$(0.25,0,0)$ to get $f(4.75,2.25,6.75)=-9.969134843$
As you may suspect, the actual minimum has a value of -10 .

